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The advent of focused library and virtual screening has reduced the disadvantage of combinatorial chemistry
and changed it to a realizable and cost-effective tool in drug discovery. Usually, genetic algorithms (GAs)
are used to quickly finding high-scoring molecules by sampling a small subset of the total combinatorial
space. Therefore, scoring functions play essential roles in focused library design. Reported here is our initial
attempt to establish a new approach for generating a target-focused library using the combination of the
scores of structural diversity and binding affinity with our newly improved druglikeness scoring functions.
Meanwhile, a software package, named LD1.0, was developed on the basis of the new approach. One test
on a cyclooxygenase (COX)2-focused library successfully reproduced the structures that have been
experimentally studied as COX2-selective inhibitors. Another test is on a peroxisome proliferator-activated
receptorsγ-focused library design, which not only reproduces the key fragments in the approved
(thiazolidinedione) TZD drugs, but also generates some new structures that are more active than the approved
drugs or published ligands. Both of the two tests took∼15% of the running time of the ordinary molecular
docking method. Thus, our new approach is an effective, reliable, and practical way for building up a properly
sized focused library with a high hit rate, novel structure, and good ADME/T profile.

Introduction

The advent of combinatorial chemistry is one of the most
exciting developments in medicinal chemistry in the past
decade.1-3 Coupled with automation technologies and high-
throughput screening, it offers great potential for discovering
new drug leads. This technology allows thousands or even
millions of compounds to be synthesized at the same time;
however, many products in the huge library are redundant.
It also does not make sense to validate and assay millions
of compounds. To synthesize a chemical library of reasonable
size and considerable hit rate, three-dimensional (3D)
structural information and properties of a studied receptor
should be taken into consideration to filter out redundant
compounds.4,5 Thus, the critical challenges are, first, to select
sets of fragments that have the best potential to be parts of
new drug leads for a given target and, second, to set up
proper criteria for product judgment (screening).

To overcome the first challenge, three types of virtual
libraries have been suggested. They are focused libraries,
targeted libraries, and primary screening libraries.6 A focused

library is built on the basis of a lead molecule or pharma-
cophore and geared toward one particular molecular target.
A targeted library is designed for finding drug leads against
specific targets. A primary screening libraries is a large
combinatorial library used to randomly find new hits or to
design novel scaffolds.6 To solve the second problem,
druglikeness and structural diversity have been introduced
into the library design to reduce its size and increase its
efficiency.4,7 Initially, the focus in combinatorial library
design was on selecting diverse sets of compounds on the
assumption that maximizing diversity would result in a broad
coverage of bioactivity space and, hence, would maximize
the chances of finding drug leads.7 The creation of diversity
by compound libraries has been a central claim and task of
combinatorial chemistry since its inception. Suggestions and
assumptions on how to assess diversity have been studied
during the past decade.8-18

Druglikeness is another key factor that needs to be
considered during library design.19-23 It has been estimated
that ∼40% of compounds fail to be developed into drugs
due to their poor pharmacokinetic properties.24 Therefore,
initial strategies toward this goal should be involved in the
use of computational filters to remove compounds deemed
to be chemically unsuitable for drug development. This
approach has already been applied by several research
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groups.25-27 In 1997, a set of assumptions about necessary
features for a “good” drug candidate was suggested and
embodied in a so-called “Rule of Five” by Lipinski and co-
workers.28 Then, other scientists put up new methods to
improve prediction performance of the “Rule of Five”. J
Galvez et al. developed a new method to achieve a pattern
of general pharmacological activity based on molecular
topology.29 Some other research groups used a neural
network to classify chemical compounds into potentially
“druglike” and “nondruglike” categories.30-32 Druglike index
(DLI), which is calculated based upon the knowledge derived
from known drugs, was introduced by Xu et al.33 However,
the above methods still have their limitations in virtual
screening, such as time-consuming and poor performances.
Therefore, how to discriminate a druglike compound from
nondruglike is still a great challenge in library design.

A focused library is actually a representative sample of
the full chemical space. Thus, some stochastic methods for
exploring the whole chemical space should be applied, of
which genetic algorithms (GA) and simulated annealing are
generally used, because of their high efficiency in searching
large combinatorial spaces.34-38 The results of both depend
on particular series of pseudorandom numbers, so multiple
runs usually need to be done, and there is no guarantee that
the global best solution will be found. However, good results
are usually found much more quickly than a purely random
search or a systematic search.39 Hence, library-based GA
approach was applied to optimize our focused library.

The aim of this study is to establish a new efficient
approach that can be used to build, optimize and assess
focused libraries based on the 3D structures of target receptor.
To reduce the library size and improve its efficiency, we
modified and developed the commonly used criteria for
evaluating druglikeness. In addition, molecular docking is
used to evaluate the binding potential between target protein
and candidate compounds to further reduce library size and
enhance its hit rate. On the basis of the new approach, a
software package, named LD1.0, was successfully developed.
Cyclooxygenase (COX)2- and peroxisome proliferator-
activated receptors (PPAR)γ-focused libraries were generated
by using LD1.0 with the newly modified descriptors for
druglikeness. The result shows that LD1.0 and the modified
descriptor set are reliable and would have wide implications
for future work in discovering and optimizing drug leads.

Methodology
The Software LD1.0.Figure 1 is a schematic diagram of

LD1.0. First, building blocks are selected from given
fragment databases to create a serial of virtual libraries
according to assigned chemical reaction steps. Second,
library-based GA is applied to optimize the virtual libraries.
Each library is evaluated by certain criteria, such as docking
energy, molecular diversity, and druglikeness. Then, accord-
ing to the evaluating scores of every library, GA retains some
libraries with higher scores and meanwhile creates some new
libraries to form the next generation of focused libraries.
Finally, GA optimization ends once the termination condition
is satisfied.

Library-Based GA. GA is a stochastic optimization
method that mimics the process of natural evolution by

manipulating a population of data structures called chromo-
somes. The purpose of this study is to design the best focused
library, so a library-based GA approach was applied to
optimize the focused library. Library-based GA means that
the GA’s chromosomes are not molecules, but focused
libraries. At first, the module “library-based GA” simulates
different chemical reactions among the given fragments to
produce various molecules. Since multiple reactions have
been considered during the program design, this module can
cope with a nine-step reaction. For each step, all atomic
types, bond lengths, and bond angles of both the reactants
and the products are verified to ensure that chemical reactions
take place properly. The final products are kept in corre-
sponding libraries. Then each library is evaluated by different
descriptor sets of molecular diversity, druglikeness, and
potential bioactivity (binding affinity to receptor). The score
from each descriptor is normalized. The final score of each
focused library is the sum of the normalized scores from
each algorithm multiplied by their weights. On the basis of
the scores, GA produces the next generation of libraries by
copying, crossing, and mutation. GA optimization keeps
running in this way until most of the top-ranking libraries
include the same building blocks or the optimization reaches
the maximum number of genetic generations. The best library
is the product: a successfully constructed focused library.

Structural Diversity. It was reported that 2D structural
descriptions are fast and accurate for calculating molecular
diversity.12,40Flower and co-workers found 39 best structural
descriptors for calculating molecular diversity,13 which were
also employed in LD1.0. A distance method was selected in
this study to estimate molecular structural diversity, for it
has considerable physical meanings. First, each descriptor
is normalized. Then a Eulide space is described by all
descriptors with their weights. So the difference (or similar-
ity), dij, of two molecules can be presented by the distance
between the two molecular points in the space, calculated
according to eq 1,

Figure 1. A schematic diagram of the software LD1.0 for the
focused library design.
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where x̂k
j is the normalized value of thekth descriptor for

the jth molecule, which can be calculated using eq 2,

where xk
j is the value of thekth descriptor for thejth

molecule,xjk is the mean value of the descriptor k,σk is the
variance difference of the descriptor k, andwk is the weight
of the descriptor k. Then a library’s diversity,Dk, can be
calculated using eq 3,

wheren is the number of molecules in the library. SoDk is
a sum of the distances between any two molecules in a
library. The final scores of all libraries in a certain GA
generation are normalized using eq 4,

whereDk,nor is the final score of thekth focused library.Dmax

and Dmin are the maximum and minimumDk values of a
specific generation, respectively. Thus, the highest score of
library diversity is 1 and the lowest is 0.

Druglikeness.Usually the molecules for studying drug-
likeness are taken from molecular databases, such as the
MACCS-II Drug Data Report (MDDR), Comprehensive
Medicinal Chemistry (CMC), and the Available Chemicals
Directory (ACD).19,34,41,42 In this study, four molecular
databases were used, namely, ACD, MDDR, CMC, and the
Chinese natural product database(CNPD);43 however, only
those molecules that are composed of C, H, O, N, S, P, and
halogen elements with molecular weights from 78 to 600
were chosen for calculating druglikeness. Furthermore,
nontherapeutic compounds were removed from the CMC
database, and those molecules that are included in MDDR
and CMC were also deleted from ACD. Subsequently, there
are 294 315, 108 114, 6680 and 41 782 compounds left in
the modified ACD, MDDR, CMC, and CNPD databases,
respectively. It is expected that the compounds in MDDR,
CMC, and CNPD are, on average, more druglike than those
in the ACD library.

The selection of descriptors is important in estimating
druglikeness. The “rule of five” suggests that a compound
is not druglike if it meets two of the four following

conditions: the compound has more than five hydrogen bond
(H-bond) donors, 10 H-bond acceptors, a molecular weight
(MW) greater than 500, and calculated logP (CLogP) greater
than 5 (or MlogP> 4.15).28 When this rule was employed
to study the druglikeness of the compounds in the above
four libraries, the result showed that CMC is much closer to
ACD than to MDDR. For instance, the mean values of MW
are 309.9, 325.0, and 392.0 for ACD, CMC, and MDDR,
respectively, suggesting that CMC is more ACD-like than
MDDR-like. This is different from our expectation, indicating
that MW, one descriptor of the rule, could not efficiently
separate ACD from CMC. Therefore, there is room to
improve the descriptor set for calculating druglikeness. To
make a more robust descriptor set, 21 new structural
descriptors, which are library- and molecular-size-indepen-
dent, were designed for developing a new druglikeness
descriptor set.44 Three of them were introduced into LD1.0
for calculating druglikeness. Therefore, the new descriptor
set encoded in LD1.0 is composed of the “rule of five” and
the three new descriptors of structural ratio. Table 1
summarizes these descriptors, where XlogP is a program
developed by Lai et al. for calculating LogP.45

Activity Assessment.Molecular activity could be defined
by its binding affinity to the target protein. Nowadays, molec-
ular docking is the most commonly used method to evaluate
binding strength of a ligand to its target(s). One of the most
popular molecular docking programs is DOCK4.0.46-48 The
best energy score from DOCK 4.0 was used in our software
package to assess molecular bioactivity. The score could be
very different in different systems, suggesting that the
ordinary methods for normalization cannot be used in the
case of the activity score. To solve this problem, a sigmoid
function, eq 5, was introduced into LD1.0 for dealing with
the normalization,

wherea is a constant,x is the binding energy from the output
file of DOCK 4.0, andy is the normalized activity score.
Because the binding energy in the output file of DOCK4.0
is always no greater than 0.00 kcal/mol,y is always between
0 and 1. Therefore, the sigmoid function is a good choice
for the normalization of the bioactivity score. Figure 2
demonstrates the plot of the sigmoid function against binding
energy whena equals 0.05. If the value ofx is between 0.00
and -80.00 kcal/mol, the normalized activity score,y, is
between 0.0000 and 0.9640 (Figure 2).

Table 1. Descriptor Set for Calculating Druglikeness

descriptor meaning range default weight

XLogP octanol/water partition coefficient ∼-0.5 to 5 0.1
MW molecular weight ∼78 to 500 0.1
HBA hydrogen bond acceptor ∼2 to 10 0.1
HBD hydrogen bond donor (if no. of HBA is not greater than 10) e5 0.1
C3p ratio of the number of C(sp3) atoms over the total number of

nonhalogen heavy atoms
∼0.15 to 0.8 0.2

h_p ratio of the number of hydrogen atoms over the total number
of nonhalogen heavy atoms

∼0.6 to 1.6 0.2

unsat_p ratio of the molecular unsaturation over the total number
of nonhalogen heavy atoms

∼0.10 to 0.45 0.2

x̂k
j ) wk(xk

j - xjk
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) (2)
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General Score Function for a Focused Library.The
general score function for assessing a focused library is
composed of three scores: the diversity score, the druglike-
ness score, and an activity score with weights of 0.1-0.3,
0.1-0.3, and∼0.5 to 0.9, respectively. The weight of a
specific score could be changed for different investigations.
For example, if the compounds in a library are known to be
very druglike, and what is of most interest in a study is the
hit rate, even greater weight might be given to the activity
score to improve the hit rate of the final library. The default
weights for diversity, druglikeness, and activity scores in
LD1.0 are 0.1, 0.2, and 0.7, respectively.

Building Blocks. A successful focus library also relies
on the building block database. Our building blocks come
from three sources.

1. From Known Drugs or Inhibitors. Extracting frag-
ments from known drugs or ligands (inhibitors or activators)
of the studied target is an effective approach for collecting
new building blocks. A specific fragment database for a
certain target should be constructed on the basis of available
structural information of its ligands.

2. From Existing Drug Fragment Libraries. Some
fragment libraries, such as the fragment library in the module
Ludi of the software Insight II, are often used for de novo
drug design.49 The software LD1.0 has a default fragment
database for those targets with little information about their
ligands.

3. From Inhibitors of Similar Targets. Homology
proteins usually share similar structural features and char-
acteristics, especially at the binding site or active site.
Therefore, the ligands for different targets belonging to the
same family should share some common fragments in their
inhibitors. Thus, the fragment database for a target could be
constructed by referring to the structures of the ligands of
its homology proteins.

Results and Discussion

Calculating Molecular Diversity. To verify the reason-
ability of the descriptor set for calculating molecular
diversity, two libraries, nos. 1 and 2, were constructed from
two sets of molecules randomly selected from the MDDR
database with molecular weights less than 350. Library no.
1 has 23 molecules that are composed of only three elements,
C, H, and O. Library no. 2, also randomly selected from
MDDR, has 23 molecules as well, but without any restraint

in their structures; therefore, library no. 1 should possess
lower diversity than library no. 2. Then,Dk,nor for libraries
nos. 1 and 2 should be equal to 0.0 and 1.0, respectively.
Meanwhile, two more libraries, nos. 3 and 4, were con-
structed by mixing some molecules from library no. 1 with
some molecules from library no. 2. Table 2 summarized these
four libraries. Regarding library no. 3, it has 12 structures
from library no. 1 and 11 compounds from library no. 2.
Similarly, library no. 4 has 18 structures from library no. 1.
Thus, it is expected that library no. 2 should have a higher
score than library no. 3. Indeed, the calculation result using
the molecular diversity descriptor set (Table 2) shows that
the library diversity correlates with the number of the
molecules from library no. 2, demonstrating that the structural
diversity descriptor set is reasonably good.

Calculating Molecular Druglikeness. 1. Setting Values
for the New Descriptors.44 Taking the descriptor h_p in
Table 1 as an example, Figure 3 depicts its distribution in
the four modified libraries, ACD, MDDR, CMC, and CNPD.

It shows that when the h_p has values from 0.80 to 1.40,
the ACD library has the lowest value of percentages among
the four databases, suggesting that a library is more druglike
if its h_p value is within the rang from 0.80 to 1.40. Because
ACD is not a pure nondruglike library, some of its
compounds might be potential drug leads. The default value
for h_p was set as 0.6-1.60. According to the definition of
h_p in Table 1, it should be related to molecular saturation.
Thus, a molecule with a chain structure is not a good drug
lead if its carbon atoms are all in sp3 hybridization. Values
of the other two new descriptors were set in a way similar
tto that of the descriptor h_p. Their default values are 0.15-
0.80 and 0.10-0.45 for C3p and unsat_p, respectively.44

2. Validating Druglikeness Descriptor Set.To testify the
modified descriptor set for druglikeness, two tests were
carried out as shown in Figure 4.

Figure 4a shows the result based on 100 ordinary oral
drugs.50 It illustrates that 58% of them obtained score of 1.0,
and 83% have scores>0.6, suggesting that the newly
modified druglikeness descriptor set is reasonable. Figure
4b is the testing result for ACD, MDDR, CMC, and CNPD.
It demonstrates that more compounds are less druglike in
ACD than in MDDR, CNC, and CNPD, suggesting again
that our druglikeness descriptor set has a strong ability to
discriminate a druglike library from a nondruglike library.

Test Cases for LD1.0.To verify the reliability of the
software package LD1.0, two tests were carried out on
building COX2-focused and PPARγ-focused libraries.

1. Focused Library Design for COX-2 Inhibitors.
Cyclooxygenase is a key enzyme associated with arachidonic
acid (AA) metabolism. Inhibitors of COX, such as nonste-
roidal antiinflammatory drugs (NSAIDs), have displayed

Figure 2. The plot of the sigmoid functiony against the binding
score from DOCK 4.0.

Table 2. Molecular Libraries for Testing the Modified
Descriptor Set in Evaluating Molecular Diversity

molecular library

1 2 3 4

molecule no. from library 1 23 0 12 18
molecule no. from library 2 0 23 11 5
Dk,nor 0.0000 1.0000 0.7726 0.3882

Combinatorial Library Design Journal of Combinatorial Chemistry, 2005, Vol. 7, No. 3401



their antiinflammatory action.51-53 However, treatment with
NSAIDs, particularly in chronic cases, often leads to disrup-
tion of beneficial prostaglandin-regulated processes.54,55COX
has two isoforms, namely, COX-1 and COX-2.56-59 It is
believed that the inhibition of COX-1 causes the side effects
seen with NSAIDs. Therefore, the selective inhibitors of
COX-2 would constitute a novel approach to the treatment
of inflammation with fewer side effects.60 This idea has led
to the discovery of a family of COX2-selective inhibitors
and drugs that are better tolerated than the older NSAIDs.
SC58635, an FDA-approved drug for antiinflammation, is
one of the drugs.61 To test LD1.0 and the modified descriptor
sets, we decided to build a COX2-focused library by using
LD1.0 to see whether the optimized focused library contains
the marketed and published COX-2 selective drugs and
inhibitors.

1. Fragment Databases.SC58635 could be divided into
three parts as shown in Figure 5. Here, the head of SC58635
is part A that is ap-aminosulfophenyl; the tail is part C that
is p-methylphenyl; and the body is part B, 3-trifluoro-1H-
pyrazol-1-yl, which acts as a linkage between parts A and
C. Referring to the structures of the other published COX
inhibitors, we constructed three fragment databases for parts
A, B, and C with fragment numbers of 12, 16, and 4,
respectively. Figure 6 lists all these fragments.

These fragments from different parts could react with each
other to produce 768 compounds. Starting from these
fragments and on the basis of the X-ray crystallographic
structure of COX2 (PDB entry 6COX), the software LD1.0
was employed to build a COX2-focued library with a
population of 3× 3 × 3. Default parameters in LD1.0 were
used for constructing the testing library. The program
terminated normally after running for 28 generations. It took
one CPU on a SGI R12000 Origin3800 computer 5.42 h.
The final COX2-focused library consists of the fragments
A1, A2, A9, B1, B9, B10, C1, C3, and C4.

2. COX2-Focused Library. Experimental results have
demonstrated thatp-aminosulfophenyl andp-methylsul-
fophenyl are key groups for inhibition activity.62 Indeed, the
optimized fragments for part A are A1 (p-aminosulfophenyl),

Figure 3. Figure 3. The distribution of the descriptor h_p for the databases of ACD, MDDR, CMC, and CNPD.

Figure 4. Testing result of the modified druglikeness descriptor set.

Figure 5. Structure of selective COX-2 drug SC58635 and its
fragment division.
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A2 (p-methylsulfophenyl), and A9. The fragment A9 is the
head of Parecoxib sodium, a very powerful COX2-selective
inhibitor.63 Figure 7 depicts the binding model between
COX2 and SC58635 derived by DOCK4.0.

Figure 7 clearly shows that the head part of the drug
interacts with the hydrophilic site of the binding pocket with
two hydrogen bonds through its amino and sulfo groups.
Therefore, the head part should be the key group for
inhibition activity. On the other hand, Figure 7 also suggests
that part B interacts with the hydrophobic site of the binding
site of COX2. Indeed, the optimized fragments for part B
are B1, B9, and B10, which are more likely hydrophobic.
B9 is the body part of the drug SC58635, and B10 is the
body part of another COX2-selective inhibitor, DuP-697,
developed by DuPont Corp.62 Meanwhile, B1 can be found
as the body part in some other COX2 inhibitors.64 The
optimized fragments for part C are also hydrophobic in
nature, corresponding to the hydrophobic part of the binding
site. Fragment C1 is the tail of SC58635, and C3 is the tail
of DuP697. C4 is also a frequently appearing fragment in
certain COX2 inhibitors.65

On the basis of the optimized fragments, a focused library
containing 27 compounds has been constructed. We carried

out a preliminary literature survey and found that six of them
are the reported COX2-selective inhibitors.64,65 Figure 8
depicts their structures and bioactivities. This result demon-
strats that the software LD1.0 could successfully reproduce
experimental results. Meanwhile, pure molecular docking
was also performed using DOCK4.0 for comparison. The
docking process for 768 structures, which were obtained
through the combination of the initial fragments in Figure
6, requires more than 40.4 h. Hence, our program LD1.0
(5.42 h) saves more than 86.6% of the running time.
Furthermore, no compounds among the top 27 structures
identified by DOCK4.0 are found in the LD1.0-optimized
COX2-focused library; moreover, pure docking did not place
the 6 experimentally tested COX2 inhibitors shown in Figure
8 into the list of the top 27 compounds. Obviously, the
combination of druglikeness and structural diversity descrip-
tors with molecular docking is an effective approach for
designing focused library with high hit rate and good
ADME/T profile. Accordingly, LD1.0 should be a reliable
and practical tool for building up a focused library against a
specific target structure.

Focused Library Design for PPARγ Agonists.To further
verify LD1.0 to see whether it can generate novel structures,
another test on designing a focused library of PPARγ
agonists was performed. The PPARs form a subfamily of
the nuclear receptor superfamily. Three isoforms, encoded
by separate genes, have been identified: PPARγ, PPARR,
and PPARδ (also named PPARâ). PPARγ, the best-
characterized subtype of PPARs, plays a crucial role in
adipogenesis, glucose homeostasis, and insulin sensitiza-
tion.66,67 Thus, it is an important target for the treatment of
type II diabetes, and its agonists are therefore expected to
be novel drugs for the disease. Indeed, thiazolidinediones

Figure 6. The initial fragments for parts A, B, and C for COX2
inhibitors. The symbols+ andf represent the sites where fragments
connect to each other to form a complete structure.

Figure 7. The binding model between COX2 and SC58635 derived
from the docking calculation.
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(TZD), for example, Rosiglitazone and Pioglitazone (glita-
zones), approved by the Federal Drug Administration as
drugs for type II diabetes, are high-affinity PPARγ agonists.
However, the present PPARγ treatment of type 2 diabetes
is still inadequate. For instance, a number of TZDs have been
dropped from development due to their unacceptable side-
effect profile.68 It remains unclear whether the side effects
are caused by the mechanism of action of these compounds
or originate within the 2,4-thiazolidinedione chemical struc-
ture common to this class. Therefore, we determined to build
a PPARγ-focused library that would contain both thiazo-
lidinediones and nonthiazolidinediones. The library was built,
on the basis of the X-ray crystallographic structure of PPARγ
(PDB entry 2PRG), by using LD1.0.

1. Fragment Databases.It was noticed that most of the
PPARγ agonists can be divided into three parts, as shown
in Figure 9. Part A is a hydrophilic head, part C is a
hydrophobic tail, and part B is a linker between parts A and
C. After analyzing a large number of PPAR agonists and
referring to other known drug fragment libraries, three
fragment databases were constructed for parts A, B, and C
with fragment numbers of 118, 88, and 98, respectively.
These fragments could react with each other to give∼106

structures. Taking into account the capability of our labora-
tory for bioassay, we decided to construct a PPARγ-focused
library with a population of 10× 10× 10 by 3× 10 building
blocks.

2. Optimizing Building Blocks. The calculation condi-
tions and parameters were set as the same as those for COX2-

library construction. After running 434 generations, the
program LD1.0 terminated normally, and the optimized
building blocks for parts A, B, and C were reported. Some
are depicted in Figure 10. This process cost one CPU of the
same computer∼84 days.

For part A, all the building blocks in Figure 10a are
hydrophilic groups that could form hydrogen bonds with
PPARγ. All the building blocks for part C in Figure 10c
contain a hydrophobic aromatic ring, but their structures have
considerable diversity. According to the X-ray structure, part
C is located at the entrance of the PPARγ binding pocket.
Because the structure of the entrance is rather flexible, it is
understandable that part C has great structural diversity. The
PPARγ crystal structure shows that the site where the part
B occupied is a flat channel. Hence, a rigid planar fragment
structure is expected. Indeed, the optimized building blocks
for part B have a common structural feature: a planar five-
or six-membered ring structure (Figure 10b).

3. Library Validation. We noticed that parts A and B of
TZDs were found among the optimized building blocks for
parts A and B. But, the tail of TZDs was not found in the
optimized building blocks for part C. This is in agreement
with the high structural flexibility of the entrance mouth of
the PPARγ binding site. On the other hand, it also hints that
there might be some compounds in the library that are more
active than the usual TZDs, if our algorithm, including those
modified descriptor sets, is reliable. To verify our assumption,
a bioassay experiment was then carried out on some of the
compounds. Indeed, a few of them were discovered to be
more powerful as agonists than those FDA-approved TZD
drugs (unpublished data). On the other hand, the fragments
used in above focused library construction can generate a
general library containing 1 017 632 structures. This library
was screened using the pure docking method (DOCK4.0)
targeting the binding pocket of PPARγ. The top 1000
structures from DOCK4.0 only reproduced 22 molecules of
the 1000 structures in the optimized PPARγ-focused library

Figure 8. Successfully reproduced inhibitor structures in the COX2-focused library by LD1.0.

Figure 9. Common structure characteristic of PPARγ agonists and
possibly structural fragment division.
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generated by LD1.0. Remarkably, LD1.0 saved∼88% of
the running time in comparison with DOCK4.0. This testing
example demonstrated again that for a combinatorial library
design, the software LD1.0 as well as newly modified
descriptor sets for druglikeness can optimize the building
blocks, reduce the library size, and increase the hit rate. In
addition, molecules designed with this approach may have
good ADME/T properties.

Conclusions

A new approach for building a target-focused library was
developed on the basis of the combination of the descriptor
sets for molecular diversity and druglikeness with molecular
docking. The library-based GA method was implemented
into this method for library optimization, and DOCK4.0
was employed for scoring bioactivity. The application of
this approach on building COX2- and PPARγ-focused
libraries not only reproduced the important fragments in
structures of the FDA approved drugs and in other published
ligands, but also generated novel structures with more
powerful potential than those available drugs, demonstrating
that our new approach is efficient and reliable and would be
helpful in discovering new drug leads with good ADME/T
properties against various diseases rapidly and cost-ef-
fectively.
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